Конструкторы применили новый метод расчета на прочность корпусов осколочно-фугасных снарядов при выстреле, основанный на теории упругопластических деформаций, разработанной коллективом ученых Института механики АН СССР под руководством члена-корреспондента АН СССР А.А. Ильюшина. Новый метод позволил более правильно рассчитывать конструкцию снаряда, расширить номенклатуру материалов для производства корпусов, включив в нее материалы с пониженными механическими характеристиками, и отменить термическую обработку корпусов. Это дало большую экономию топлива, сократило объемы внутризаводской транспортировки изделий, высвободило термическое оборудование и значительное количество квалифицированных рабочих. Экономия в результате отмены термообработки при изготовлении одной тысячи корпусов 152-мм пушечных снарядов составила более 2600 руб. При этом осколочное действие снарядов повысилось на 15–20 %.
Корпуса многих видов артиллерийских снарядов стали изготовлять отливкой из сталистого чугуна, а не из дорогостоящей качественной стали [7] . Это имело очень важное значение для решения проблемы массового и ускоренного выпуска корпусов снарядов. Эффективность действия снарядов из сталистого чугуна против живой силы повышалась, так как при взрыве они давали больше осколков.
Все эти и многие другие меры позволили переломить ситуацию, обеспечить наших бойцов достаточным количеством боеприпасов.
Глава 3. СРЕДСТВА НАБЛЮДЕНИЯ И УПРАВЛЕНИЯ ОГНЕМ
Первые приборы. Применение оптических приборов для военных целей начинается с появления подзорной трубы. Это было первое, но не единственное изобретение, сделанное с целью «вооружить» глаз разведчика. К XX веку их изобрели немало.
Русско-японская война, а тем более Первая мировая война 1914–1918 годов показали, что без оптических приборов воевать уж никак невозможно.
В арсенале средств ведения современной войны важную роль играют оптика и оптические приборы. Эти средства широко распространены в разнообразных областях боевой деятельности всех родов войск.
Даже обычная винтовка становилась снайперской, получив оптический прицел. Управление же огнем морской, сухопутной и зенитной артиллерии уже в 1930-е годы прошлого века целиком базировалось на оптических визирах, прицелах и точнейших стереоскопических дальномерах. Оперативная и тактическая разведка с воздуха, контроль результатов бомбометания все чаще осуществлялись посредством аэрофотосъемки.
В общем, не зря говорится, что лучше один раз увидеть, чем сто услышать. Около 90 % всей информации об окружающей обстановке человек получает с помощью зрения. Это правило остается в силе и применительно к человеку на войне. Подавляющее большинство сведений о расстановке сил противника, его перемещениях, даже намерениях познается с помощью наблюдения.
Между тем использование уже обычного полевого бинокля с 8-кратным увеличением повышает дальность обнаружения примерно в 7–8 раз, дальность опознавания в 4–5 раз, точность прицеливания в 10–15 раз.
Для получения детальной информации и ее документирования используют фотографию. Аэрофотоаппаратура, наземные длиннофокусные фотографические приборы обеспечивают получение детальной информации в кратчайшие сроки.
Между тем создание хорошей оптической аппаратуры требует развития в стране мощной производственной базы, начиная от математического аппарата, позволяющего правильно рассчитать конструкцию того или иного оптического прибора, и кончая печами для варки специального стекла.
Оптическое стекло — это однородный прозрачный и бесцветный материал, свойства которого практически не изменяются во времени. Малейшая неоднородность стекла вызывает отклонения световых лучей от заданного направления, искажая изображение объектов.
Технология изготовления оптического стекла не так уж проста. Достаточно сказать, что для достижения требуемой однородности расплав перемешивают в процессе варки при температуре, достигающей 1400–1500 °C, а режим отжига заготовок стекла соблюдается с точностью до 2–5 °C на протяжении нескольких суток, а то и месяцев, если уж отливка чересчур велика.
В России оптическая наука и технология начали развиваться в первой половине XVIII века во времена одного из основоположников оптического приборостроения М.В. Ломоносова и известного конструктора оптических приборов И.П. Кулибина. Однако их разработки не получили должного развития в последующих поколениях. И к концу XIX века в России действовало всего лишь несколько мелких оптических мастерских и фирм, находившихся в полной зависимости от иностранных компаний, которые поставляли мастерским оптическое стекло, узлы и некоторые детали приборов.
В начале XX века наиболее крупными предприятиями по производству оптических приборов в России были фабрики Фосса в Варшаве и Гаубера-Цветкова в Москве, Обуховский завод в Петербурге.
Именно на Обуховском сталелитейном заводе в 1905 году под руководством инженера Я.Л. Перепелкина была создана первая в России государственная оптическая мастерская [8] , в которой к началу Первой мировой войны работало 230 человек.
Однако что такое двести с лишним оптиков на всю огромную Россию? Капля в море… Понимая это, А.Н. Крылов, назначенный в то время председателем Морского технического комитета, предпринял все от него зависящее для расширения оптического производства.
Причем опираться он предпочел на отечественные кадры. Так, ему было известно, что А.Л. Гершун, единственный в то время специалист в России по расчету оптических систем, еще в 1898 году в своей работе «Об оптических инструментах» на основании тщательного анализа состояния науки и техники предсказал интенсивное развитие оптического приборостроения. В 1902 году в Константиновском межевом институте профессор Н.М. Кислов начал чтение курса «Теория оптических инструментов», по которому затем было выпущено учебное пособие. Это был первый в России фундаментальный труд по оптико-механическим инструментам. Примерно в то же время физик А.Я. Тудоровский начал читать морским артиллерийским офицерам курс «Теории оптических приборов», понимая, что без оптики им никак не обойтись в самое ближайшее время.
Начавшаяся в 1914 году Первая мировая война заставила серьезно задуматься над катастрофическим положением со снабжением русской армии и флота оптическими приборами. Проблему частично решили, закупая необходимые приборы за рубежом. Однако после революции и такая возможность исчезла. Оставалось одно — развивать быстрыми темпами собственную оптическую промышленность.
Панорамный танковый прицел ПТ-1.
Перископическая артиллерийская буссоль.
Для руководства и координирования работ в этом направлении в стране создается ВООМП — Всероссийское, а потом и Всесоюзное объединение оптико-механической промышленности.
В рамках его создаются Конструкторско-исследовательское бюро, Бюро оптических приборов и Сектор технологических разработок. Для работы в них привлекаются как старые испытанные, так и новые молодые специалисты. Так, для работы в ВООМПе были приглашены видные специалисты того времени С.И. Фрейберг, Н.П. Качалов и другие. Быстро росли и молодые кадры. Так, недавний выпускник университета Л. Л. Гуляев вскоре стал главным конструктором ВООМПа, а его ровесник A.Л. Никитин — заведующим производством.
Совместные усилия привели к тому, что уже в 1932 году объем производства на предприятиях ВООМПа по сравнению с 1928 годом вырос более чем в 10 раз. Отрасль усиленно развивалась, строились новые корпуса заводов, возросло число работающих.
В 1936 году Советским правительством была принята комплексная программа создания большого морского флота. Для артиллерийского вооружения этих кораблей была разработана своя подпрограмма оптического обеспечения корабельной артиллерии, подводных лодок и артиллерийских систем стационарных и подвижных артиллерийских установок береговой обороны. В частности, ею предусматривалась разработка и организация серийного выпуска стереоскопических дальномеров, визиров центральной наводки, перископов для подводных лодок, прицелов для торпедных аппаратов и т. д.